BPI MEDIA KIT

CONTENTS
- About BPI
- Waste Diversion Overview
- BPI Certification Artwork
- Recent News
- Case Studies and Other Resources

About BPI

BPI’s mission is to promote a societal shift to the circular economy where products and packaging fit into successful zero waste systems, prioritizing reduction and reuse, followed by recycling and composting. Founded in 1990, BPI is North America’s leading certifier of compostable products and packaging.

BPI works with companies (members) wishing to market materials, products and packaging as compostable, and uses a process based on third-party laboratory testing and ASTM standards for compostability. BPI only certifies products that help facilitate the diversion of food scraps and organic material that would otherwise be landfilled, and turns away applications for certification that do not align with its mission.

Once the technical review has been completed and a product or package has satisfied all testing requirements, the member signs a license agreement granting them use of BPI artwork, provided the terms of use laid out in the member agreement are followed, including use of the BPI logo along with qualifying language for compostability claims on all products and packaging. BPI’s Logo and Messaging Guide is designed to help members make choices for their product and packaging artwork that are in line with the license agreement and FTC and Competition Bureau guidelines.

BPI is engaged throughout North America and beyond on issues related to organics diversion and the broader support of the Circular Economy. The organization is led by its Executive Director of 4 years, Rhodes Yepsen.
WASTE DIVERSION OVERVIEW

“Waste Diversion” is, broadly speaking, the process of keeping things out of (“diverting” them away from) landfills. The “3 Rs” waste management hierarchy of “Reduce, Reuse, Recycle” is a foundational principle of the Circular Economy, and is endorsed by BPI. Only after options for reduction and reuse are exhausted should recycling of any form be relied upon.

Traditional recycling – the “blue bin model” that many are familiar with – involves collecting single-use items like plastic bottles and aluminum cans and sending them back through the supply chain for processing so the material can be used again rather than landfilled. The success of a model like this depends, among other things, on a healthy and consistent demand for the material being collected. Generally speaking, single-use items used to package food have minimal demand in end markets due to contamination.

For many years, the US depended on China as the primary buyer for its recycled material. Beginning in January 2018, China’s “National Sword” policy banned the import of most plastics and other common single-use materials. Due, in part, to China’s new policy, many municipal recycling programs in the US are having a hard time finding end markets and recycling rates are dropping.

Organics recycling (composting) is a version of recycling that aims to keep organic material (food scraps and other wasted food, yard trimmings, BPI certified products and packaging, etc) out of landfills by diverting them to commercial compost facilities. The US generates 40 million tons of food scraps every year and composts fewer than 6% of them.

Composting is a natural process that turns organic materials into a conditioner for the soil. As an organic-matter resource, compost has the unique ability to improve the chemical, physical, and biological characteristics of soils. Compost is produced through the activity of aerobic (oxygen requiring) microorganisms. These microbes require oxygen, moisture, and food in order to grow and multiply.

Compostable packaging exists, in part, to help facilitate the diversion of food scraps and the packaging it comes with to commercial compost facilities. Composting rates depend greatly on the infrastructure available, meaning the haulers and facilities required to collect and accept compostable materials for processing. A 2017 study conducted by BioCycle determined that there were 4,713 total compost facilities in the United States, or about 24% of total incorporated cities and towns. Of those 4,713 facilities, 57% accept yard trimmings only, 5% accept yard trimmings and food scraps only, and another 13% accept “Multiple Organics”, which includes food scraps.
Certifier Addresses Claims of “Toxic” Chemicals In Compostable Products (December, 2018)

BPI Certified products already on track to eliminate PFAS by end of 2019

The Biodegradable Products Institute (BPI), North America’s leading certifier of compostable products and packaging, today clarified that it has already put measures in place to restrict and then eliminate the use of fluorinated chemicals in the products and packaging it certifies for compostability.

Due to growing concerns around fluorinated chemicals, often referred to as perfluorinated or polyfluorinated alkyl substance (PFAS) as a class of chemicals, BPI engaged with composters, municipalities, and environmental groups, hiring an expert advisor in 2017 to develop a path forward. In November 2017, the BPI membership and Board of Directors voted to approve a 100 parts per million (ppm) total fluorine limit in its certification to address the entire class of chemicals, followed by a statement of no intentionally added fluorinated chemicals. BPI certified compostable products and packaging not meeting the 100 ppm total fluorine requirement must be phased out of the marketplace by the end of 2019.
“For the 20 years that BPI has been certifying compostable products, the efficacy of our program has been driven by how well those products perform in the compost environments they are accepted into,” said Rhodes Yepsen, Executive Director of BPI. “Once composters and municipalities began telling us their concerns about fluorinated chemicals in foodservice packaging, we participated in studies and learned that it persists during the composting process, and is likely bioavailable to fruit and vegetable crops grown in the finished compost, so we knew we had to be proactive and update our certification requirements.”

Flourinated chemicals like PFAS are used across a number of industries, and are an effective, FDA-approved “grease-proofing” barrier used on some paper and molded pulp food packaging. Most BPI certified products already do not contain fluorinated chemicals, instead achieving water and grease barrier through the use of compostable biopolymers like PLA, PBAT, PBS, or PHA, as well as compostable waxes.

BPI’s overarching goal is the scalable diversion of organic waste to composting by verifying that products and packaging will successfully break down in professionally managed composting facilities, without harming the quality of finished compost. The certification program is built on a third party system of independent labs that test to ASTM standard specifications, and a robust technical review by an accredited body. The ASTM standards include multiple requirements before a product can be claimed to be compostable, including biodegradation testing, disintegration testing, heavy metals limits, and plant toxicity testing. Currently BPI certifies products and packaging from over 200 companies around the world, and maintains a public database that is keyword searchable for over 9,000 certified items.

“This new restriction on fluorinated chemicals in compostable packaging is the first of its kind, and will be challenging for our staff and member companies selling compostable products, but it is clearly the right thing to do, and something we are all committed to,” said Yepsen. “Compostable products and packaging play a pivotal role in the zero-waste movement, and as more communities across the Americas set up food waste collection programs, we are working to ensure that BPI’s certification will continue to be a trusted benchmark for compostability.

BPI Taps DIN CERTCO For Third-Party Compostability Verification (November, 2017)

The BPI Board of Directors announced today that DIN CERTCO has been hired for the administration of technical reviews under the BPI certification program, effective December 1, 2017.

BPI operates North America’s leading certification for compostable products, with over 6,500 products currently approved based on ASTM’s scientific standards. DIN CERTCO has more
than 2 decades of experience administering compostability certification for groups such as EU
Bioplastics Association and Australasia Bioplastics, as well as its own certifications.

Certification for compostable products is critical for ensuring that items have been properly
tested, meet international standards, and can be identified as such by composters,
municipalities, restaurants, consumers, and others engaged in the diversion of organic
waste. States like California and Maryland have laws requiring any product marketed as
compostable to meet these standards, and BPI certification is widely acknowledged as the best
means of doing so.

“We are excited to partner with DIN CERTCO for this next phase of our certification
program, as they are a recognized leader in the compostability field,” says Rhodes Yepsen,
Executive Director of BPI. “This will not change the appearance of the BPI certification to
those who trust and rely on it. However, offices in China and Taiwan will assist with the
growing number of companies located overseas, and technical expertise will ensure continued
strength in compostability claims for products and packaging that are increasingly complex in
nature.”

“This is an excellent opportunity for BPI and DIN CERTCO to provide our customers the
best service possible. We are convinced that we are able to provide a value added service with
our experts, since we have been active in the field of industrial compostable products for
more than 20 years.” adds Robert Zorn, Managing Director of DIN CERTCO. “Together
with BPI we will be able to provide customers a one-stop solution to access several markets in
one go.”

CASE STUDIES AND RESOURCES

The following links will help develop a broader understanding of waste diversion and what it
can look like when practiced successfully.

City of San Francisco “Zero-Waste” Case Study

City of Seattle “Zero-Waste” Case Study

Dodge County, MN Compost Case Study

“Taco Time” Restaurant Case Study

EPA: Sustainable Materials Management